
Chin. Phys. B Vol. 29, No. 9 (2020) 090201

Dynamical analysis for hybrid virus infection system
in switching environment*
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We investigate the dynamical behavior of hybrid virus infection systems with nonlytic immune response in switching
environment, which is modeled as a stochastic process of telegraph noise and represented as a multi-state Markov chains.
Firstly, The existence of unique positive solution and boundedness of the new hybrid system is proved. Furthermore, the
sufficient conditions for extinction and persistence of virus are established. Finally, stochastic simulations are performed to
test and demonstrate the conclusions. As a consequence, our work suggests that stochastic switching environment plays a
crucial role in the process of virus prevention and treatment.
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1. Introduction
Infectious diseases have always been harmful to our body

and minded throughout the development of human beings, es-
pecially viral infectious diseases.[1–9] It is therefore critical to
find which factors will affect viral diseases. Academically, the
research of the impact of environmental noise on systems has
achieved satisfactory results. Many scholars have studied how
HIV can cause AIDS by infecting human body, to establish
virus infection systems.[10–13] Importantly, Bartholdy et al.[14]

constructed the virus model with nonlytic immune responses
to describe the basic dynamics of the interaction among sus-
ceptible host cells, a virus population, and immune responses.
Moreover, Wodarz et al.[9] investigated the dynamics of the
models based on the basic reproduction number. The effects of
stochastic noise and delay effect on the virus infection model
were studied theoretically by Li et al.,[15,16] they have shown
that enough white noise can cause virus population to die out
without constraint. Wang et al.[17] investigated global stabil-
ity of viral infection model with lytic and nonlytic immune
responses. The author mainly analyzed the stability of disease-
free steady state and disease steady state by using LaSalle’s in-
variance principle and central manifold theorem. At the same
time, they also derived a different type of conditions for the
global stability of the disease steady state by using a geometri-
cal approach. After that, they considered the dynamical behav-
ior of a virus infection model with delayed nonlytic immune
response.[18] The local stabilities of two boundary equilibria
were established in the research. It was found that time delay
can change the stability of the equilibrium and can lead to the
existence of Hopf bifurcations.

In the real biological systems, some important parame-
ters of the epidemic model are usually influenced by random
switching of external environmental regimes.[19] For example,
in the actual medical treatment of HIV patients, drug treatment
is generally instantaneous, the numbers of T cells and infected
T cells change greatly in a very short period of time, which
corresponds to the switching of the virus survival environment
in two different states.[20] Therefore, based on the biological
system in random environment, the infectious disease model
with certain parameters is not realistic. It is of great signif-
icance to study the random switching of environmental state
for studying the number change of susceptible host cells, a
virus population, and immune responses, so as to analyze the
dynamic behavior of the infectious disease model.

The purpose of this article is to explore the effect of the
stochastic switching environment on the virus infection model
with nonlytic immune responses. The stochastic switching
environment (or telegraph noise) is expressed as multi-state
Markov chains. They consist of sudden instantaneous tran-
sitions between two or more sets of parameter values in the
underlying model corresponding to two or more different envi-
ronments or regimes.[21,22] The switching is memoryless and
the waiting time for the next switch has an exponential dis-
tribution. We can hence model the switching between envi-
ronments by a finite state continuous time Markov chain with
state space S= 1, 2,. . ., M, where M is the number of different
environments.

Many researchers have studied the effects of telegraph
noise on the population model. For example, the SIS model
has been discussed in literature.[23–29] For example, Gray et
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al. studied the behavior of this system.[21] Note that the model
assumes that the system switches between the two regimes and
the Markov switching is independent of the state of the sys-
tem. The explicit solution and the conditions for extinction and
persistence of the stochastic SIS epidemic model were estab-
lished in the research. Zhang et al. investigated the influence
of telegraph noise on the stochastic SIS epidemic model with
vaccination.[30] They established sufficient conditions for the
existence of a unique ergodic stationary distribution by con-
structing stochastic Lyapunov functions with regime switch-
ing.

Markov environment has also been extensively studied
in other biological fields. For example, Anderson[31] studied
the optimal development strategy of animal population under
Markov environment. Padilla and Adolph[32] raised a mathe-
matical model to predict the expected adaptation of phenotypic
plastic organisms in a variable environment. Further, they dis-
cussed the importance of time delays in this model. Moreover,
Peccoud and Ycart[33] proposed a Markov model for gene in-
duction process. Caswell and Cohen[34] took over the impact
of the spectrum of the environmental change when the partial
focusing coexists.

In this paper, we establish a virus infection model with
nonlytic immune responses under stochastic switching envi-
ronment. Furthermore, we establish the impact of switch-
ing environment on the virus infection model, particularly the
stochastic character such as extinction and persistence. One
of the advantages of this study is that we use a new approach
to analyze and derive the properties of the stochastic virus in-
fection model, rather than using the Fokker–Planck equation.
Another advantage is that the threshold for extinction and per-
sistence of virus are obtained by strict mathematical proofs.
Most importantly, this study is the first attempt to consider the
extinction and persistence of the virus infection model with
nonlytic immune responses under stochastic switching envi-
ronment, which fills the gap in the existing literature.

The main contents of other parts are summarized. Sec-
tion 2 introduces the stochastic virus model under stochastic
switching environment. Then, we briefly introduce some fun-
damental concepts of finite state Markov chains. In Section 3,
sufficient conditions for extinction and persistence are estab-
lished. Section 4 shows the stochastic simulations to verify the
theorems in Section 3 and illustrates our results. The last sec-
tion summarizes the conclusions and future directions of the
research.

2. Model and preliminary
In the process of virus infection, the host immune system

reacts with innate and antigen-specific immune responses. At
the macro level, these two types of reactions can be roughly
divided into lytic and nonlytic components. Lytic components

can kill infected cells directly, whereas nonlytic effect can only
inhibit virus replication through soluble mediators. As a part
of the innate response, natural killer cells can lyse infected
cells, and cytokines secreted by various cell types can inhibit
viral replication in a nonlytic fashion. In the practical antigen-
specific response, cytotoxic T lymphocytes kill infected cells,
whereas antibodies neutralize free virus particles and thus in-
hibit the infection of susceptible cells. In order to investigate
the role of direct lytic and nonlytic inhibition of viral replica-
tion by immune cells in viral infections, Wodarz et al.[9] and
Bartholdy et al.[14] constructed a mathematical model describ-
ing the basic dynamics of the interaction between susceptible
host cells, a virus population, and immune responses, which is
described by the following differential equation:

ẋ(t) = λ −δx(t)− βx(t)y(t)
1+qz(t)

,

ẏ(t) =
βx(t)y(t)
1+qz(t)

−ay(t)− py(t)z(t),

ż(t) = cy(t)−bz(t).

(1)

The model details the changes in host-cell number and
strength of the immune response as the infection develops
over time. Here x(t) denotes the number of susceptible host
cells, y(t) denotes the number of virus population, and z(t) de-
notes the number of the immune responses. The relationship
is shown in Fig. 1.

susceptible host

cells, x↼t↽
δx↼t↽

λ

qz↼t↽⇁

z↼t↽

ay↼t↽

py↼t↽z↼t↽
y↼t↽

virus population,

βx↼t↽y↼t↽

cell death

immune responses

Fig. 1. Schematic diagram of our virus infection model.

The overdot above a variable represents the derivative
with respect to time t. Susceptible host cells are generated at
a constant rate λ from a source and die at a rate δx(t) and be-
come infected by virus at a rate βx(t)y(t) without the immune
responses. Viral replication is inhibited by the immune re-
sponse at a rate 1+qz(t). This corresponds to nonlytic antivi-
ral activity. Infected cells die at a rate ay(t), and are killed by
the immune system at a rate py(t)z(t) for modeling lyric effec-
tor mechanisms. Here we assume that the rate of enhancement
of immune response is directly proportional to the number of
infected cells, namely cy(t),[9] and that its rate of attenuation
is directly proportional to the current intensity, namely, bz(t)
(see. Table 1).
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Table 1. Some parameters of the system (2). All parameters are sup-
posed to be nonnegative.

Parameters Interpretation
λ growth rate of susceptible host cells
β transmission coefficient between x and y
δ death rate of x
a death rate of y
b death rate of z
c scale factor of immune response

Note that system (1) has not included the dynamics of
free virus explicitly because it is assumed that the turn over of
free virus is much faster than that of infected cells.[9,14] This
allows them to make a quasi steady-state assumption, whereby
the amount of free virus is simply proportional to the number
of infected cells. Hence, the number of infected cells can be
considered as a measure of virus load.

Next we review some basic theories about Markov
chains. Throughout this paper, unless stated otherwise, we
let (Ω ,ℱ ,ℱt≥0,P) be a complete probability space with filtra-
tion ℱt≥0 satisfying the usual conditions (i.e. it is increasing
and right continuous while ℱ0 contains all P-null sets). Fur-
thermore, let r(t) (t ≥ 0) be a continuous-time Markov chain
on the probability space taking values in finite state space
S= {1,2, . . . ,M}, with generator Γ = (νi j)M×M defined as

P{r(t +∆t) = j | r(t) = i}

=

{
νi j∆t +o(∆t), if i ̸= j,

1+νii∆t +o(∆t), if i = j,
(2)

where ∆t > 0, νi j ≥ 0 is the transition rate from state i to j for
i ̸= j and νii = −Σ1≤ j≤M, j ̸=iνi j for i = 1,2, . . . ,M.[35] More-
over, we define Π = (π1,π2, . . . ,πM) as the stationary distri-
bution of Markov chains which is unique. If M = 2,

π1 =
ν21

ν12 +ν21
and π2 =

ν12

ν12 +ν21
.

For any function ν on the set of states S, we define some no-
tions:

ν̂ = max
k∈S

ν(k), ν̌ = min
k∈S

ν(k).

After recalling these fundamental concept of Markov
chains, Now, in order to express clearly and simplify, we intro-
duce two-state Markovian switching into (1), which becomes
the following stochastic virus infection model:

ẋ(t) = λr(t)−δr(t)x(t)−
βr(t)x(t)y(t)
1+qr(t)z(t)

,

ẏ(t) =
βr(t)x(t)y(t)
1+qr(t)z(t)

−ar(t)y(t)− pr(t)y(t)z(t),

ż(t) = cr(t)y(t)−br(t)z(t),

(3)

where r(t) is a right-continuous Markov chain with state space
S= 1,2. We will concentrate on analyzing this model.

For the sake of researching the survival and extinction, we
need to define appropriately persistence and extinction. Here
our definitions are inspired by the works of Yang and Mao[35]

and Liu and Wang.[36] The useful definitions are as follows:
(1) The virus y(t) will go to extinction if lim

t→+∞
y(t) = 0.

(2) The virus y(t) will be strongly persistent in the mean
if liminf

t→+∞

1
t
∫ t

0 y(s)ds > 0.

3. Theoretical analysis and results
The objective of this section is to study extinction and per-

sistent of system (3). First, we prove that solutions of system
(3) are positive and ultimately bounded.

Theorem 1 All solutions of system (3) are positive for
t > 0 and there exists M > 0, such that all the solutions satisfy
x(t), y(t), z(t)< M for all large t.

Proof The positive solution of system (3) has been stud-
ied in Ref. [17]. Here we mainly demonstrate the ultimate
boundedness.

Since all solutions to Eqs. (3) are positive, from the first
equation of Eqs. (3) we have

ẋ(t) = λr(t)−δr(t)x(t)−
βr(t)x(t)y(t)
1+qr(t)z(t)

< λ̂ − δ̌x(t). (4)

Therefore, we obtain

x(t)<
λ̂

δ̌
+1, for all large t, say t > t0.

Adding the first two equations yields

ẋ(t)+ ẏ(t) = λr(t)−δr(t)x(t)−ar(t)y(t)− pr(t)y(t)z(t)

< λ̂ − δ̌x(t).

Let C > 0 such that δ̌C > λ̂ +1. Then, so long as

x(t)+ y(t)≥C+
λ̂

δ̌
+1, t > t0,

we have ẋ(t)+ ẏ(t)<−1. Clearly, there must exist t1 > t0 such
that

x(t)+ y(t)<C+
λ̂

δ̌
+1, for all t > t1.

The asymptotic bound for y(t), namely, y(t)<C+
λ̂

δ̌
+1, to-

gether with the differential inequality

ż(t)< ĉ
(

C+
λ̂

δ̌
+1
)
− b̌z, for large t

leads immediately to the asymptotic bound z(t) ≤ ĉ
b̌
(C+ λ̂

δ̌
+

1), for large t.
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Next we concentrate on talking about the conditions for extinction and persistence of our virus model (3). The reproductive
ratio of the virus model (1) is shown by R0 =

λβ

aδ
in Refs. [9,14,15,17]. This ratio describes the average number of new infected

cells produced by an infected cell at the beginning of the infectious process. It is easy to find out that if R0 < 1, the disease-free
steady state E0 = (λ

δ
,0,0) is the only stable state, corresponding to the extinction of the free virus. When R0 > 1, in addition to

the disease-free state which is unstable, there is only one disease steady state E1 = (x,y,z), and there is another equilibrium point

E1 = {x,y,z}=
{

cλ (1+qz)
cδ +(bβ + cδq)z

,
bz
c
,− pcδ +abβ +acδq

2(bpβ + cδ pq)
+

√
(pcδ +abβ +acδq)2 −4p(bβ + cδq)(acδ − cλβ )

2(bpβ + cδ pq)

}
, (5)

where E1 is called the disease state, in which the virus can
build infection and survive. Moreover, under certain condi-
tions, the disease state E1 is globally asymptotically stable.
The global stability of steady state E1 is proved in detail by
Wang et al.[17]

Now let us recall that r(t) is a Markov chain with state
space S = 1,2. If r(t) = 1, then we will be in state 1, and if
r(t) = 2 then in state 2. For convenience, we give the follow-
ing alternative condition on the value of R0 in different states:

R0 < 1 if and only if αr(t) < 0;
R0 ≥ 1 if and only if αr(t) ≥ 0; where

αr(t) = βr(t)λr(t)−δr(t)ar(t).

Theorem 2 Extinction. If

R*
0 =

(π1β1 +π2β2)(π1λ1 +π2λ2)

(π1a1 +π2a2)(π1δ1 +π2δ2)
< 1,

then, for any given initial (x(0),y(0),z(0))(x(0),y(0),z(0)) ∈
(0,M)3, the solution of the stochastic virus infection model (3)
has the properties as follows:

liminf
t→∞

x(t)≤ π1λ1 +π2λ2

π1δ1 +π2δ2
a.s. (6)

limsup
t→∞

x(t)≥ π1λ1 +π2λ2

π1δ1 +π2δ2
a.s. (7)

and

lim
t→∞

y(t) = 0 a.s. (8)

lim
t→∞

z(t) = 0 a.s. (9)

In other words, the number of susceptible host cells will reach

the neighborhood of the level
π1λ1 +π2λ2

π1δ1 +π2δ2
a.s., and the dis-

ease will die out almost surely (a.s.).
Proof Let us prove assertion (6) first. If this were not

true, then we can find an ε > 0 sufficiently small for P(Ω1)>

0, where

Ω1 =

{
ω ∈ Ω : liminf

t→∞
x(t)>

π1λ1 +π2λ2

π1δ1 +π2δ2
+ ε

}
. (10)

On the one hand, by the ergodic theory of the Markov chains,
we have P(Ω2) = 1, where, for any ω ∈ Ω2,

lim
t→∞

1
t

∫ t

0

(
λr(s)−δr(s)

[
π1λ1 +π2λ2

π1δ1 +π2δ2
+ ε

])
ds

= π1

(
λ1 −δ1

[
π1λ1 +π2λ2

π1δ1 +π2δ2
+ ε

])
+π2

(
λ2 −δ2

[
π1λ1 +π2λ2

π1δ1 +π2δ2
+ ε

])
= −(π1δ1 +π2δ2)ε. (11)

Now consider any ω ∈ Ω1 ∩Ω2. Then there is a positive num-
ber T = T (ω) such that x(t) ≥ π1λ1+π2λ2

π1δ1+π2δ2
+ ε,∀t ≥ T . On the

other hand,

dx(t) =

[
λr(t)−δr(t)x(t)+

βr(t)x(t)y(t)
qr(t)z(t)+1

]
dt

≤ (λr(t)−δr(t)x(t))dt. (12)

It follows from Eq. (12) that

x(t) ≤ x(0)+
∫ T

0
(λr(s)−δr(s)x(s))ds

+
∫ t

T

(
λr(s)−δr(s)

[
π1λ1 +π2λ2

π1δ1 +π2δ2
+ ε

])
ds

for all t ≥ T . Dividing both sides by t and then letting t → ∞,
we obtain

limsup
t→∞

x(t)
t

≤−(π1δ1 +π2δ2)ε,

where Eq. (11) has been used. This implies

lim
t→∞

x(t) = 0.

However, this contradicts Eq. (10). This required assertion (6)
must therefore hold.

Let us prove assertion (8) before we prove assertion (7).
By integrating the first equation of model (3) and then dividing
both sides by t, we obtain

x(t)− x(0)
t

=
1
t

∫ t

0
(λr(s)−δr(s)x(s)−

βr(s)x(s)y(s)
qr(s)z(s)+1

)ds

≤ 1
t

∫ t

0
(λr(s)−δr(s)x(s))ds.

We compute

1
t

∫ t

0
δr(s)x(s)ds ≤ 1

t

∫ t

0
λr(s)ds− x(t)− x(0)

t
. (13)

Finding the limit of both sides of Eq. (13) and using the prop-
erties of conditional expectation, we have

(π1δ1 +π2δ2) lim
t→∞

1
t

∫ t

0
x(s)ds ≤ π1λ1 +π2λ2.
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That is to say,

lim
t→∞

1
t

∫ t

0
x(s)ds ≤ π1λ1 +π2λ2

π1δ1 +π2δ2
+ ε.

From model (3), it is easy to find

d lny(t) =
[

βr(t)x(t)
qr(t)z(t)+1

−ar(t)− pr(t)z(t)
]

dt.

Integrating this equation and dividing on both sides by t yield

lny(t)− lny(0)
t

=
1
t

∫ t

0

(
−ar(s)+

βr(s)x(s)
qr(s)z(s)+1

− pr(s)z(s)
)

ds

≤ 1
t

∫ t

0
(βr(s)x(s)−ar(s))ds. (14)

Taking the limit of both sides of Eq. (14), we hence obtain

limsup
t→∞

1
t

ln(y(t))

≤ [π1β1 +π2β2]
π1λ1 +π2λ2

π1δ1 +π2δ2
− (π1a1 +π2a2).

Thus, if

(π1β1 +π2β2)(π1λ1 +π2λ2)< (π1a1 +π2a2)(π1δ1 +π2δ2),

we have
lim
t→∞

y(t) = 0.

Therefore, assertion (19) must hold.
Next let us prove assertion (7). The proof of assertion (7)

is very like to Eq. (6). If this were not true, then we can find a
value of ε > 0 sufficiently small for P(Ω3)> 0, where

Ω3 = {ω ∈ Ω : limsup
t→∞

x(t)<
π1λ1 +π2λ2

π1δ1 +π2δ2
− ε}. (15)

By the ergodic theory of the Markov chain, we also have
P(Ω4) = 1, where for any ω ∈ Ω4,

lim
t→∞

1
t

∫ t

0

(
λr(s)−δr(s)

[
π1λ1 +π2λ2

π1δ1 +π2δ2
− ε

])
ds

= π1

(
λ1 −δ1

[
π1λ1 +π2λ2

π1δ1 +π2δ2
− ε

])
+π2

(
λ2 −δ2

[
π1λ1 +π2λ2

π1δ1 +π2δ2
− ε

])
= (π1δ1 +π2δ2)ε.

Now consider any ω ∈ Ω3 ∩Ω4. Then there is a positive num-
ber T = T (ω) such that x(t) ≥ π1λ1+π2λ2

π1δ1+π2δ2
− ε,∀t ≥ T . On the

other hand, from the model (3) we have

x(t)− x(0) =
∫ t

0
(λr(s)−δr(s)x(s))ds−

∫ t

0

βr(s)x(s)y(s)
qr(s)z(s)+1

ds

≥
∫ T

0
(λr(s)−δr(s)x(s))ds

+
∫ t

T

(
λr(s)−δr(s)

[
π1λ1 +π2λ2

π1δ1 +π2δ2

])
ds

−
∫ t

0

βr(s)x(s)y(s)
qr(s)z(s)+1

ds

∀t ≥ T . Dividing both sides by t and then letting t → ∞, we
obtain

limsup
t→∞

x(t)
t

≥ (π1δ1 +π2δ2)ε,

where Eq. (8) has been used. This implies that

lim
t→∞

x(t) = ∞.

However, this contradicts Eq. (15). This required assertion (7)
must therefore hold. The proof of assertion (9) is straightfor-
ward, so it is omitted.

Note that if both α1 < 0 and α2 < 0, then clearly the cor-
responding R0 values for both subsystems (state 1 and state 2)
will be less than one, thus both subsystems will die out, hence
virus will become extinct, and of course this is unsurprising.
However, if only one of α1 and α2 is negative, say state 1, then
we will have α1 < 0 while α2 > 0 in state 2. In other words,
one subsystem will go extinct whilst the other will persist. It
turns out that if the rate of the Markov chain switching from
state 2 to state 1 is relatively faster than that from state 1 to 2,
then the effect from state 1 will predominate, thus making the
overall system die out. This reveals the important role of the
Markov chain in the extinction. In Section 4, we show some
simulations to illustrate this case.

Apart from extinction, the persistence of the virus is also
important in the analysis of models of a particular disease. As
a result, the following theorem shows that the virus will be
persistent in this case.

Theorem 3 Mean strong persistence. If

R*
0 =

(π1β1 +π2β2)(π1λ1 +π2λ2)

(π1a1 +π2a2)(π1δ1 +π2δ2)
> 1,

then virus population y(t) tends to strong persistence in the
mean a.s.

Proof From the second equation of model (3), we have

y(t)− y(0)
t

=
1
t

∫ t

0

[
βr(s)x(s)

qr(s)z(s)+1

−ar(s)y(s)− pr(s)y(s)z(s)
]

ds. (16)

Following from the model (3) and (16), we can reach

x(t)− x(0)
t

+
y(t)− y(0)

t

=
1
t

∫ t

0
(λr(s)−δr(s)x(s)−ar(s)y(s)− pr(s)y(s)z(s))ds. (17)

Then we have
1
t

∫ t

0
λr(s)ds

=
1
t

∫ t

0
(δr(s)x(s))ds− x(t)− x(0)

t
− y(t)− y(0)

t
090201-5
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−1
t

∫ t

0
(ar(s)y(s))ds− 1

t

∫ t

0
(pr(s)y(s)z(s))ds.

By conditional expectation and letting t → ∞, we obtain

lim
t→∞

1
t

∫ t

0
x(s)ds

=
π1λ1 +π2λ2

π1δ1 +π2δ2
− π1a1 +π2a2

π1δ1 +π2δ2
lim
t→∞

1
t

∫ t

0
y(s)ds

− 1
π1δ1 +π2δ2

lim
t→∞

1
t

∫ t

0
(pr(s)y(s)z(s))ds

≤ π1λ1 +π2λ2

π1δ1 +π2δ2
− π1a1 +π2a2

π1δ1 +π2δ2
lim
t→∞

1
t

∫ t

0
y(s)ds. (18)

From Eq. (14), we can compute

1
t

∫ t

0
(βr(s)x(s))ds ≥ lny(t)− lny(0)

t
+

1
t

∫ t

0
ar(s)ds.

Then we have

1
t

∫ t

0
x(s)ds

≥ 1
π1β1 +π2β2

lny(t)− lny(0)
t

+
π1a1 +π2a2

π1β1 +π2β2
. (19)

Taking the limit of both sides of Eq. (19) and combining with
Eq. (18), we have

π1a1 +π2a2

π1β1 +π2β2

≤ π1λ1 +π2λ2

π1δ1 +π2δ2
− π1a1 +π2a2

π1δ1 +π2δ2
lim
t→∞

1
t

∫ t

0
y(s)ds. (20)

Then we can arrive at

liminf
t→∞

1
t

∫ t

0
y(s)ds ≤

(
(π1β1 +π2β2)(π1λ1 +π2λ2)− (π1δ1 +π2δ2)(π1a1 +π2a2)

(π1β1 +π2β2)(π1δ1 +π2δ2)

)(
π1β1 +π2β2

π1a1 +π2a2

)
.

Consequently, we can derive that if

(π1β1 +π2β2)(π1λ1 +π2λ2)> (π1a1 +π2a2)(π1δ1 +π2δ2),

then
liminf

t→∞

1
t

∫ t

0
y(s)ds > 0 a.s.

Therefore assertion must hold.

4. Stochastic simulation and discussions
In this section, we use the Euler and Gillespie algorithm

to verify and illustrate the theoretical results in Section 3. The
parameters used in this section are approximated and taken
from Refs. [9,14,17,20]. For model (3), we consider the fol-
lowing discretization equations:

xk+1 = xk +(λr(t)−δr(t)x(t)−
βr(t)x(t)y(t)
1+qr(t)z(t)

)∆t,

yk+1 = yk +(
βr(t)x(t)y(t)
1+qr(t)z(t)

−ar(t)y(t)− pr(t)y(t)z(t))∆t,

zk+1 = zk +(cr(t)y(t)−br(t)z(t))∆t.

The evolution of virus over time is depicted in Figs. 2
and 3. For all the numerical simulations, we choose the
same initial value (x(0),y(0),z(0)) = (1.5,9,5) and param-
eters p1 = 0.0220, p2 = 0.0320, q1 = 0.0300, q2 = 0.0400,
b1 = 0.1230, b2 = 0.2010.

In terms of Fig. 2, we fix parameters v12 = 0.6 and
v21 = 0.9, it is clear that π1 = 0.6 and π2 = 0.4. In Fig. 2(a),
we deduce that α1 =−0.4270 < 0, α2 =−0.6064 < 0, R*

0 < 1
and the theoretical value π1λ1+π2λ2

π1δ1+π2δ2
= 1.9760, and averaging

after integration of x(t), it follows that the simulated value
is 1.9450. Furthermore, in Fig. 2(b), we compute that α1 =

−0.4270 < 0, α2 = 0.0019 > 0, R*
0 < 1, and theoretical value

π1λ1+π2λ2
π1δ1+π2δ2

= 3.6143. By averaging after integration of x(t), it
follows that the simulated value is 3.5905. On the one hand,
we find that the simulated value is very close to the theoretical
value, which can verify the correctness of the theoretical value
in Theorem 2. On the other hand, from Figs. 2(a) and 2(b) we
can see that the solution of model (3) obeys limt→∞ y(t) = 0,
the number of susceptible cells x(t) reaches the neighborhood
of the theoretical value π1λ1+π2λ2

π1δ1+π2δ2
a.s., and limt→∞ z(t) = 0.

Thus, the curves of Fig. 2 supports the conclusions in The-
orem 2.

Moreover, comparing Fig. 2(a) and Fig. 2(b), we can find
an important and fascinating phenomenon. In Fig. 2(b), the pa-
rameter values for state r(t) = 1 satisfy α1 < 0 and the param-
eter values for state r(t) = 2 satisfy and α2 > 0. Based on the
results[17] of the deterministic model (1), the virus population
y(t) in state r(t) = 1 will be extinct, and y(t) in state r(t) = 2
will be persistent. However, if switching rate of Markov chain
from state 2 to state 1 is comparatively faster than that from 1
to 2, it will satisfy R*

0 < 1, then the virus population y(t) in the
stochastic model (3) will be extinct. This behavior indicates
that in the presence of telegraph noise, the virus will expe-
rience extinction. In other words, the presence of telegraph
noise is conducive to the extinction of the virus. In this case,
patients could be completely cured by effective therapy.

Figure 3 illustrates the results of Theorem 3. Here we
choose the parameters v12 = 0.6 and v21 = 0.9, therefore the
unique stationary distribution π1 = 0.6, π2 = 0.4 and R*

0 > 1.
According to Theorem 3, in consideration of Theorem 3, we
realize that y(t) will be strong persistence in the mean. The
simulation results of Fig. 3 verify the theoretical results. More-
over, we find a equilibrium point E* = (x*,y*,z*), where
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E* = {x*,y*,z*}=
{

π1c1λ1(1+q1z1)+π2c2λ2(1+q2z2)

π1c1δ1 +(b1β1 + c1δ1q1)z1 +π2c2δ2 +(b2β2 + c2δ2q2)z2
,

π1b1z1 +π2b2z2

π1c1 +π2c2
,

π1(−(p1c1δ1 +a1b1β1 +a1c1δ1q1))

2π1(b1 p1β1 + c1δ1 p1q1)+2π2(b2 p2β2 + c2δ2 p2q2)

+
π1(
√

(p1c1δ1 +a1b1β1 +a1c1δ1q)
2 −4p1(b1β1 + c1δ1q1)(a1c1δ1 − c1λ1β1))

2π1(b1 p1β1 + c1δ1 p1q1)+2π2(b2 p2β2 + c2δ2 p2q2)

+
π2(−(p2c2δ2 +a2b2β2 +a2c2δ2q2))

2π1(b1 p1β1 + c1δ1 p1q1)+2π2(b2 p2β2 + c2δ2 p2q2)

+
π2(
√

(p2c2δ2 +a2b2β2 +a2c2δ2q)
2 −4p2(b2β2 + c2δ2q2)(a2c2δ2 − c2λ2β2))

2π1(b1 p1β1 + c1δ1 p1q1)+2π2(b2 p2β2 + c2δ2 p2q2)

}
.
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Fig. 2. Sample path x(t), y(t), z(t) and its corresponding Markov chain r(t) for the stochastic virus infection model (3), using the parameters
c1 = 0.0100 and c2 = 0.0150: (a) λ1 = 0.7130, λ2 = 0.5181, β1 = 0.0123, β2 = 0.0115, δ1 = 0.2861, δ2 = 0.3743, a1 = 1.523, and a2 =
1.636, (b) λ1 = 0.7130, λ2 = 0.5181, β1 = 0.0123, β2 = 0.0115, δ1 = 0.2861, δ2 = 0.0101, a1 = 1.523, a2 = 0.401, with the initial value
(x(0),y(0),z(0)) = (1.5,9,5), and the exponential distribution for the switching times of r(t), with r(0) = 1.
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Fig. 3. Sample path x(t), y(t), z(t) for the stochastic virus infection
model (3) for parameters λ1 = 0.2134, λ2 = 0.3340, β1 = 0.6223, β2 =
0.5159, δ1 = 0.4123, δ2 = 0.2061, a1 = 0.101, a2 = 0.201, c1 = 0.1100,
and c2 = 0.1150, with the initial value (x(0),y(0),z(0)) = (1.5,9,5).

5. Conclusion
In summary, we have investigated the dynamical analy-

sis of the virus infection model in stochastic switching en-
vironment. Firstly, the existence of unique positive solution
and boundedness of a new hybrid system is proved. Then,
the threshold condition for extinction and persistence of virus
population is derived by the rigorous theoretical proofs. The
biological significance of this threshold is similar to that of ba-
sic reproduction number. It is found that if R*

0 is less than 1,
then the virus population will tend to zero and the total num-
ber of susceptible host cells will converge towards the prein-
fection number of host cells. That is to say, the disease will
die out theoretically in terms of the clinical outcome.[9] If R*

0
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is greater than 1, then virus population will tend to strong per-
sistence in the mean a.s. In addition, the equilibrium point E*

for persistence has been given. Lastly, the correctness of the
theoretical results is confirmed by numerical simulation.

In general, stochastic switching environment could play
a crucial role in the process of virus evolution and treatment.
Our study shows that even if a virus is persistence in a stochas-
tic environment without switching, the virus could be extinct
in a stochastic switching environment. This reveals that the
presence of stochastic switching environment is beneficial to
extinction of disease. The present results could be further ex-
panded to multi-state switching environment. More complex
stochastic environment could also be approximated by tele-
graph noise. It should be noticed that the methods of dynami-
cal analysis in our work can be used and expanded to investi-
gate other population dynamical models.
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